NODE.JS WITH MONGODB

Sad . mongo

1) Loginto github and create a new repository

& GitHub, Inc. [US] | https://github.com/orgs/EmpowsrCourse/dashboard

Pull requests Issues

<HE EmpowerCourse - Browse activity

Repositaries I i } tahbaza pushed to Er
1 commit to maste

Msse582e added a
EmpowerCourse/course_content

EmpowerCourse/classmates

f ;-; tahbaza pushed to Er

1 commit to mast:

BBrrearea added d

Create a new repository

A repository contains all the files for your project, including the revision history.

Owner Repository name

<E EmpowerCourse = /’ v

Great repository names are short and memorable. Need inspiration? How about reimagined-train.

Description (opticnal)

This is a simple node and mongo app to accept user votes I

® Public

Anyone can see this repository. You choose who can commit.

Private
You choose who can see and commit to this repository.

| Initialize this repository with a README

This will let you immediately clone the repaository to your computer. Skip this step if you're importing an existing repositaory.

Add .gitignore: None + Add a license: None v | (D

[Create repository]

Copy the github repo url you just created:

EmpowerCourse / api-voting @Unwatch~ 2 ¥ Star

¢»Code lssues 0 Pull requests 0 Projects 0 Wiki Insights Settings

Give access to the people you work with

You should give access to the collaborators and teams you need to work with.

Add teams and collaborators

Quick setup — if you've done this kind of thing before
EISet up in Desktop | or HTTPS | S8H @ git@github.com:EmpowerCourse/api-voting.git

We recommend every repository include a README, LICENSE, and .gitignore.

2) Navigate to the directory that will contain your new project directory and open a new git bash window there.

% Fork

= | day_13

me Share View
™ » ThisPC » Local Disk (C:) * Projects * empower > course_content » day_13 »
Name B Date modified Type

ICCESS

handouts 6/10/2018 12:25PM File fold
oF node-examples 6/10/2018 12:26 PM File fold
toads € di3htn Open BM Chrome
ments Open in new window
res Pin to Quick access

Open in Visual Studio

Wer Git GUI Here
|55 Git Bash Here
ilay Find in Files with EmEditor

Ea Scan with Windows Defender...
2 (Sightsource) N
Give access to

3) Typenpm init inorder to create a new node project. It will prompt you for a bunch of answers so that it can go off and
generate a package.json application description file for you that specifies your application dependencies. Here are appropriate
answers for this project. Type your name instead of mine obviously and your git repo url rather than mine.

§ npm init . .)
This util 1 wWa through creating a package.
common items, and tries to gue

r time to ppudds

amples) api-voting

iption: s s simple node and mongo app to a
point: (3
command
regository: git@github.com:EmpowerCours
r o
3 Ali Tahbaz
Creey

About to write to C:\Projs e 13Y B : age.json:

/github . com/EmpowerCourse/a

github.com/EmpowerCourse/api-voting#readme"

4) express is a very simple node web server that will enable us to respond to our simple requests appropriate. Install it by running the
following command which tells node package manager (npm) to download and install express-generator “globally” (that’s the —g).

npm install -g express—generator

5) Lets use the express generator we just installed to create a skeleton project with a single command

express —-view=ejs api-voting

6) That created a subdirectory that contains our skeleton project. Let’s navigate into the new directory.

cd api-voting

7) Open the directory we just created in your favorite development text editor (probably with a file/open folder menu click).

E C\Projects\empowericourse_content\day_13\node-examples\api-voting\app.js (api-voting) - Sublime Text
File Edit Selection Find WView Goto Tools Project Preferences Help

FOLDERS Ak appis
api-voting har createError require('http-errors’);
B var express = require(’express’);
. var aguire(" p: "):
public var path require(patb J,. . N
var z require(’cookie-parser');
M var logger - require('morgan’);
views
¥ appjs indexRouter = require(’./route

. =1 o ™, i LI e
/+ package.json usersRouter requ1re(./route

app - express();

.set(views", path.join(dirname, “views'));
.set('view engine', 'ejs');

8) Now let’s install some other node packages (components that add features to our application). The package.json file is an inventory
of all dependencies/components that your application needs to run. The-——save parameter in a flag/parameter that tells npm
to not only install the package for your application but also add the dependency to your package.json file as a dependency to
remember. This is important because this list of dependencies will be used to install those bits of code on other computers, most
importantly the eventual Internet server you use for deployment to share with others.

The body-parser will enable your node web server application to parse FORM data into data that can be used by your web server
actions.

The mongoose package is a component that is designed to make it easy for us to send and receive data to a MongoDB non-relational
database.

npm install --save body-parser
npm install --save mongoose

9) Let’s go create a database to put our data in. Go to https://www.mongodb.com/cloud and create a free account by clicking the Get
Started Free button in the middle of the screen.

Get started free

10) Enter your desired account details.

A, Account Profile

Email Address

s2empower@gmail com

Password
L Temmenesoseos R
~ Onreletter v One-speetal-charaster
First Name Last Name
S2 Empower
Phone Number Company Name
3367213287 S2

Job Function

Software Developer / Enginesr v
Country
United States v

#| | agree to the terms of service

Already have an account? Login CONIES

11) Click the Continue button and you’ll be presented with a bunch of cluster config options. We’re going to accept the defaults on the
first screen by clicking the following button.

MEXT: CLUSTER TIER

12) The default “tier” in the next panel will be FREE, what we want, so accept the default and click this button.

MEXT: ADDITIOMAL SETTIMNGS

13) Accept the defaults on this panel too and click this button.

MEXT: CLUSTER NAME

14) Finally, be sure to enter your cluster name and then click the Create Cluster button.

Cluster Name empower

One time only: once your cluster is created, you won't be
able to change its name.

empower I

Cluster names can only contain ASCII letters, numbers, and hyphens.

PREVIOUS: ADDITIONAL SETTINGS

F R E E Pay-as-you-go! You will be billed houry and can terminate your cluster anytime. Excludes Cancel Create Cluster
variable dara transfer, backup, and tares.

15) Click the Security tab and add a user account that you’ll use to connect.
52 » PROJECT O
Clusters

Security

MongoDB Users 1P Whit

User Name =

4+ ADD NEW USER

Choose a good username and click the Autogenerate Secure Password to generate a good, secure password. Leave the permissions for
this user as Read and write to any database and then click the Add User button. Copy/paste and save this password somewhere as we’re
going to need it in a minute.

Add New User

SCRAM Authentication
SCRAM is MongoDB's default authentication method.

db-user

e.g. new-user_31

| Bagonviaais1FH |

User Privileges

Atlas admin Read and writs to any databases Only read any database

Show Advanced Options

Cancel Add User

16) Lets get our database connection details. Click back over on the Overview tab and then click the Connect button. Click the Add
Current IP Address button and then the Save button that is displayed. Remember where this whitelist button is. We will also need to
add our Internet server’s ip address here when we deploy to the Internet.

Connect to empower

A Your P whitelist is empty. You can only connect to your cluster from whitelisted IP addresses.
You can add to your whitelist below.

@ Check the IP Whitelist

You den't have any IP addresses in your whitelist. You won't be able to connect without one.

=+ ADD ENTRY I ADD CURRENT IP ADDRESS I ALLOW ACCESS FROM ANYWHERE

e Cheose a connection method:

Connect with the Mongo Shell

Menge Shell with TLS/SSL support is required >
Connect Your Application

Get a connection string and view driver connection examples >
Connect with MongoDB Compass >

Download Compass to explore, visualize, and manipulate your data

See methods to add data and diagneostics in the Command Line Tools shortcut from within your
cluster.

Close

17) Click the Connect to your Application button and then the “l am using driver 3.4 or earlier” button to display the connection details
we’ll need from our node app. Click the COPY button. Paste into a text editor and replace the <PASSWORD> bit with your real
database user’s password. We’re going to use this in a minute by giving it to our node application so it knows where its database is.

o Copy a connection string:

See documentation on how to check the version of your driver

| am using driver 3.6 or later | am using driver 3.4 or earlier

Copy the URI connection string:

mongodb: / fdb-user : {PASSHORD >@empower-shard-82-26 - -
nuc23.mongodb.net : 27817, empower-shard-88-a1-
nuc23.mongodb.net: 27817, empower-shard-82-82 -
nuc23.mongodb.net: 27017 /test?ssl=truekreplicaSet=empower-shard-
BEauthSource=admin&retryblrites=true -

&g COPY

18) Let’s create the collections we'll need to hold our data. To do so we’ll need to download and use an application whose purpose in life
is to enable developers to manage their MongoDB data. Click the Connect button again on your cluster and then the Connect with
MongoDB Compass button and then the Operating System button to download and install the application.

Connect with MongeDB Compass
Download Compass to explore, visualize, and manipulate your data >

19) While it’s downloading click the COPY button to capture the connection details you'll need.

Connect to Compass

o If you have not already, click balow to download Compass

Il Windows ® Mac OS X Other Operating Systems ~

e Copy the URI Connection String

View detailed instructions

| am using Compass 1.12 or later | am using Compass 1.11 or aarlier

mongodb+srv: //db-user: <PASSWORD>@empower-nuc23.mongodb. net/admin o £ COPY
4 3

Replace PASSWORD with the password for the db-user user.

When you open Gompass, it should detect the URI string from your clipboard and auto-populate the
farm.

20) When the MongoDB Compass application loads it should detect the value in the connection string and put the necessary values in the
required boxes for you. You'll just need to enter the password for the database user. Click Create Favorite, Save Favorite and then

Connect.
Hostname empower-nuc23.mongodb.net
SRV Record (/
Authentication Usemame / Password v
Username db-user
Password e —
Authentication Database admin

Replica Sat Name

Read Prafarance Primary v

SSL System CA / Atlas Deployment v

SSH Tunnel None v
Favorite Name EmpowerDB

CREATE FAVORITE m

21) Now let’s create a database with the collections we’ll need for our simple app. Mongo needs an initial collection to be created with
the database container so we’re going to create our database named api_votes and our first collection named api here:

Create Database

Database Name

api_votes

Collection Name

api

[capped Collection 6

Before MongoDB can save your new database, a collection name must
also be specified at the time of creation. More Information

CANCEL CREATE DATABASE

22) Now let’s create 2 more collections named voter and vote. To do so click the database name...

Databases

CREATE DATABASE

Database Name

admin

api_votes

local

...and then click the Create Collection button.

CREATE COLLECTION

Create Collection

Collection Name

voter

[Capped Collection 6

CANCEL CREATE COLLECTION

23) We've downloaded and installed packages that we need for node and created a database with a couple of collections in MongoDB
but we haven’t told our application to make use of them.

Go back to your text editor showing you the node application directory. The app . js file located in your application root directory
is what node will run to start up your application. This is most often where application setup and configuration occurs in node.

Let’s modify the default lines in the file to include our new body-parser and mongoose components by adding or modifying the
highlighted lines here. The red, highlighted text below is from step 17 above.

var createError = require('http-errors');
var express = require('express');
var path = require('path');
var cookieParser = require('cookie-parser');
var bodyParser = require('body-parser'); // reference our body parser component
var logger = require('morgan');
// this is the start of our MongoDB database connectivity, the next lines tell
// our app where our database is, our security credentials and generally
// how to speak with the database
var mongoose = require ('mongoose');
// paste this path from your MongoDB cloud account info panel
var mongoDBPath = 'mongodb://some-user:some—-user—-password@empowerl8-wsl-shard-00-00-
pgyeb.mongodb.net:27017, empowerl8-wsl-shard-00-01-pgyeb.mongodb.net:27017, empowerl8-wsl-
shard-00-02-pgyeb .mongodb . net : 27017 /2PHlINOEES ?ss1=t ruesreplicaSet=empower18-ws1l-shard-
O&authSource=admin&retryWrites=true';
dbOptions = {

keepAlive: 1000,

connectTimeoutMS: 30000,

native_parser: true,

auto_reconnect: false,

poolSize: 10

}i
mongoose.connect (mongoDBPath, dbOptions) ;
mongoose.Promise = global.Promise;
const db = mongoose.connection;
db.on('error', (err) => {
console.log(err) ;
)i
db.once('open', (err) => {
if (err) {
console.log(err) ;

1)

// this file contains the default page that will be sent back upon a request
var indexRouter = require('./routes/index');

// this was just an example route, we can comment it out

// var usersRouter = require('./routes/users');

var app = express();

// view engine setup
app.set('views', path.join(
app.set('view engine', 'ejs');

dirname, 'views'));

app.use(logger('dev'));

// we're going to comment out the default express processor and
// tell it to use our slightly better body parser instead

// app.use (express.json());
// app.use (express.urlencoded({ extended: false }));
app.use (bodyParser.json()) ;

app.use (bodyParser.urlencoded ({ extended: false }));

app.use (cookieParser());
app.use (express.static(path.join(__dirname, 'public')));

app.use('/', indexRouter);
// comment out this path, no longer relevant
// app.use('/users', usersRouter);
// catch 404 and forward to error handler
app.use (function(req, res, next) {
next (createError (404));
P
// error handler
app.use (function(err, req, res, next) {
// set locals, only providing error in development
res.locals.message = err.message;
res.locals.error = reg.app.get('env') === 'development' ? err : {};

// render the error page
res.status(err.status || 500);
res.render ('error');

)i
module.exports = app;

24) Lets go add our application specific functionality. We need to create object definitions to mirror each of our record types. These are
called “models”. Add a directory under your application root called models and add a file named voter . js within it that
contains the following code.

var mongoose = require('mongoose');
var Schema = mongoose.Schema;
var Voter = new Schema ({
first_name : String,
last_name : String,
username : String

}, { collection: 'voter' });
module.exports = mongoose.model ('Voter', Voter);

25) Create a file named api . js within that same models directory that contains the following code.

var mongoose = require('mongoose');
var Schema = mongoose.Schema;
var Apli = new Schema ({
name : String
}, { collection: 'api' });
module.exports = mongoose.model ('Api', Api);

26) Now create a file named vote . js within that same models directory that contains the following code.

var mongoose = require('mongoose');
var Schema = mongoose.Schema;
var Vote = new Schema ({
voter_id: {
type: mongoose.Schema.Types.ObjectId,
ref: 'Voter'
}y

api_id: {
type: mongoose.Schema.Types.ObjectId,
ref: '"Api'

}, { collection: 'wvote' });
module.exports = mongoose.model ('Vote', Vote);

27) Let’s add some basic logic to make the application features meet our needs. Open routes/index.js and add/modify to the following.
We will discuss this in class in detail.

var express = require('express');

var router = express.Router();

var Voter = require('../models/voter');
var Vote = require('../models/vote');
var Api = require('../models/api');

/* GET home page. */

router.get('/', function(req, res, next) {
res.render ('index', { title: 'Express' });

)

function getApiById(api_list, api_id) {
for(var i1i=0; i<api_list.length; i++) {
if (api_id.equals(api_list[i].api_id)) {
return api_list[i];

}

return null;

// GET vote tally
router.get ('/tally', function(req, res, next) {
Vote.find () .exec(function(err, votes) {
if (err) return next (err);
// first we group the results into a distinct list, counting votes for each api
var prettyResults = [];
for(var i1i=0; i<votes.length; i++) {
var witnessedApi = getApiById(prettyResults, votes[i].api_id);

if (witnessedApi === null) {
prettyResults.push({api_id: votes[i].api_id, vote_count: 1});
} else {

witnessedApi.vote_count++;

}
// now lets loop through the distinct list and add the names of the apis to help it make
sense to the end user

var promiseArray = prettyResults.map(tally_row => new Promise (function(resolve, reject) {
Api.findById(tally_row.api_id, function (err, api) {
if (err) return reject(err);
tally_row.api_name = api.name;
resolve(tally_row);
)i

1))
Promise.all (promiseArray) .then(function(results) {

res.json(results);
)i
)i
)i

// GET vote tally
router.get ('/apis', function(req, res, next) {
Api.find () .exec(function(err, apis) {
if (err) return next (err);
res.json(apis);
)i
)i

// GET user's vote
router.get ('/:username/vote', function(req, res, next) {
// find the referenced voter
Voter.find({'username': reg.params.username}) .exec(function(err, voter) {
if (err) return next (err);
if (voter.length == 0) {
return res.json({
success: false,
message: "No voter with username " + reg.params.username + " could be found!"
)i

}
// find the first vote recorded for this voter (should only be 1)

Vote.find ({'voter_id': voter[0]._id}) .exec(function(err, existing_votes) {
if (err) return next (err);
if (existing_votes.length == 0) {
return res.json({success: false, message: reqg.params.username + " has not yet
voted."});

}
// go get the api record related to this vote

Api.findById(existing_votes[0].api_id, function (err, api) {

if (err) return next (err);
// return the vote information
return res.json({

success: true,

message: {

api_name: api.name,
voter_username: voter[0].username

// POST to save a user's vote
// expects a json request specifying { api_name: "some-api" }
router.post ('/:username/vote', function(req, res, next) {
Api.find({'name': reqg.body.api_name}) .exec(function(err, api) {
if (err) return next (err);
if (api.length == 0) {
return res.json({success: false, message: "No api named " + req.body.api_name + "

could be found!"});

}

Voter.find({'username': reg.params.username}) .exec(function(err, voter) {
if (err) return next (err);
if (voter.length == 0) {
return res.json({
success: false,
message: "No voter with username " + reg.params.username + " could be found!"
)i
}
Vote.find ({'voter_id': voter[0]._id, 'api_id': api[0]._id}) .exec(function(err,
existing_votes) {
if (err) return next (err);
// only 1 vote per voter is allowed
if (existing_votes.length > 0) {
return res.json({
success: false,
message: reg.params.username + " has already voted once! Delete the vote in
order to vote again if you like."
P
}

// record a new vote for this voter
var vote = {
voter_id: voter[0]._id,
api_id: api[0]._id
}i
new Vote (vote) .save (function (err) {
if (err) return next (err);
console.log('inserted');
res.json({success: true, message: "Vote recorded"});

// DELETE to remove a voter's vote
router.delete('/:username/vote', function(req, res, next) {
Voter.find({'username': reqg.params.username}).exec(function(err, voter) {
if (err) return next (err);
if (voter.length == 0) {
return res.json({
success: false,
message: "No voter with username " + reg.params.username + " could be found!"
)i
}

Vote.find ({'voter_id': voter[0]._id}) .exec(function(err, existing_votes) {

if (err) return next (err);

if (existing_votes.length > 0) {
Vote.findByIdAndRemove (existing_votes[0].id, (err, b) => {
if (err) return next (err);
console.log('removed ' + b._id);
res.json({success: true, message: "Vote removed"});

)i
} else {
return res.json({
success: false,
message: "No existing vote exists to delete for "+ reg.params.username +"."

module.exports = router;

28) We now have a working node.js app! Lets install our missing dependencies and run it locally. Go back to your git bash window and

execute the following 2 commands.

npm install
npm start

At this point you've just started up your web server software on your local computer and it will stay running until you stop it.

29) Now open a web browser and navigate to http://localhost:3000/tally and you should get an empty Js array back indicating no results
have yet been stored. The git bash window will log every interaction with the web server software you just built and any console.log

messages so that you can see what'’s going on.

